Single photon emission computed tomography imaging of cerebral blood flow, blood–brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats

Philippe Garrigue¹²³, Laura Giacomino⁴, Chiara Bucci⁵, Valeria Muzio⁵, Maria A Filannino⁵, Florence Sabatier¹⁶, Françoise Dignat-George¹⁷, Pascale Pisano¹⁸ and Benjamin Guillet¹²³

Abstract
Cerebral ischemia is a leading cause of disability worldwide and no other effective therapy has been validated to date than intravenous thrombolysis. In this context, many preclinical models have been developed and recent advances in preclinical imaging represent promising tools. Thus, we proposed here to characterize in vivo time profiles of cerebral blood flow, blood–brain barrier disruption and apoptosis following a transient middle cerebral artery occlusion in rats using SPECT/CT imaging. Rats underwent a 1-h middle cerebral artery occlusion followed by reperfusion. Cerebral blood flow, blood–brain barrier disruption and apoptosis were evaluated by SPECT/CT imaging using respectively ⁹⁹ᵐTc-HMPAO, ⁹⁹ᵐTc-DTPA and the experimental ⁹⁹ᵐTc-Annexin V-128, up to 14 days after middle cerebral artery occlusion. Histological evaluation of apoptosis has been performed using TUNEL method to validate the ⁹⁹ᵐTc-Annexin V-128 uptake. ⁹⁹ᵐTc-HMPAO cerebral blood flow evaluation showed hypoperfusion during occlusion, partially restored on days 4 and 7 and sustained up to 14 days after middle cerebral artery occlusion. ⁹⁹ᵐTc-DTPA SPECT/CT showed a blood–brain barrier disruption starting on day 1 post-middle cerebral artery occlusion, peaking on day 2, with barrier integrity totally restored on day 7. ⁹⁹ᵐTc-Annexin V-128 SPECT/CT imaging showed significant positive correlation with TUNEL immunohistochemistry and allowed ischemic-induced apoptosis to be detected from day 2 to day 7, peaking on day 3 after middle cerebral artery occlusion. Using SPECT/CT imaging, we showed that after transient middle cerebral artery occlusion in rat there was a sustained decrease in cerebral blood flow followed by blood–brain barrier disruption preceding meanwhile apoptosis. Rodent SPECT/CT imaging of cerebral blood flow, blood–brain barrier disruption and apoptosis appears to be an efficient tool for evaluating neuroprotective drugs and regenerative therapies against cerebral ischemia and time-windows for therapeutic intervention.

Keywords
Stroke, MCAO, brain–blood barrier, cerebral blood flow, apoptosis, SPECT

Received: 13 April 2015; accepted: 24 July 2015

Introduction
Ischemic stroke is a major cause of morbidity and mortality worldwide and less than 10% of patients are eligible for thrombolysis.¹ To date, neither curative nor regenerative strategies have been validated for clinical applications, and new approaches based on pharmacological or cell therapies still remain under evaluations.² The high complexity of central nervous system (CNS) physiopathology and the low accessibility of this tissue both contribute to enhance...