Synthesis and Reactivity of a Bis-Sultone Cross-Linker for Peptide Conjugation and [18F]-Radiolabelling via Unusual “Double Click” Approach†

Thomas Priem, a,b Cédric Bouteiller, a* David Camporese, a Anthony Romieu, b,c and Pierre-Yves Renard b,c,d

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A novel homobifunctional cross-linker based on a bis-sultone benzenic scaffold was synthesised. The potential utility of this bioconjugation reagent was demonstrated through the preparation of an original prosthetic group suitable for the [18F]-labelling of peptides. The labelling strategy is based on the nucleophilic fluorination via the ring-opening of a first sultone moiety followed by the nucleophilic ring-opening of the second remanent sultone by a reactive amine of the biopolymer. Beyond the one-step radiolabelling of the peptide, the second main advantage of this strategy is the release of free sulfonic acid moieties making the separation of the targeted [18F]-tagged sulfonated compound from its non-sulfonated precursor easier and thus faster. This first report of the successful use of bis-sultone moiety as a versatile bioconjugatable group was demonstrated through a comprehensive reactivity study involving various nucleophiles, especially those commonly found in biopolymers. An illustrative example, highlighting the potential of this unusual and promising “double click” conjugation approach, was devoted to the radiolabelling of a biological relevant peptide.

Introduction

In the context of positron emission tomography (PET) imaging, it is generally accepted that fluorine-18 (18F) is one of the widely used radioisotopes because it possesses unique physical and nuclear characteristics (i.e., ease of formation, half-life of 109.7 min, high resolution, and relative minor radiation dose to patients) suitable for challenging biomedical diagnostic applications frequently involving peptide-based probes. 1,2,3 Two main conjugation strategies are theoretically possible for the radiolabelling of complex and fragile biomolecules/biopolymers (e.g., peptides or proteins) with 18F. The first one is based on the direct no-carrier-added [18F]-labelling.

† Electronic Supplementary Information (ESI) available: Spectroscopic data of key bis-propanesultone 3 and bis- or monosultone ring-opening products. See DOI: 10.1039/b000000x/